Coherent Diffraction from Crystals

Coherent Diffraction from Crystals

Measuring 3D CXD

Silver Nano Cube (111)

Yugang Sun and Younan Xia, Science 298 2177 (2003)

3D Ag Nano Cube

Yugang Sun and Younan Xia, Science 298 2177 (2003)

Hi Resolution Imaging?

At APS 34-ID-C:

9.25 hours of scanning

0.64 hours of x-ray exposure

APS-MBA (100x)

25 sec?

Slow Dynamics?

- 25 seconds is "almost" static on the scale of hours.
 - Grain Growth (annealing twins in fcc metals)
 - Defect annealing
 - Domain evolution
 - Surface Melting
 - Equilibrium Crystal Shapes
 - DAFS

Meyers & Murr, Acta Metallurgica (1977)

Courtesy of Jim Stubbins UIUC

$f(\mathbf{Q}, E) = [f_0(\mathbf{Q}) + f'_s(E) + if''_s(E)] + [f''_s(E)\tilde{\chi}(E)].$

Charge Density wave in Cr

Acta Metallurgica (1980)

Fig. 2. Equilibrium shape of gold crystallites on graphite obtained after 70 h at 1273 K. Pressure ~10⁻⁹ torr.

ZSM-5 ($Si_{95.7}AI_{0.3}O_{192}$) MFI

a = 20.090 Å

b = 19.738 Å

c = 13.142 Å

 $\alpha = \beta = \gamma = 90.0^{\circ}$

Orthorhombic

CXD Imaging of Zeolites as a function of temperature

Cha, W., Song, S., Jeong, N. C., Harder, R., Yoon, K. B., Robinson, I. K., & Kim, H. (2010). *New Journal of Physics*, *12*(3), 035022.

CXD Imaging of Zeolites as a function of temperature

Wonsuk Cha, Nak Cheon Jeong, Sanghoon Song, Hyun-jun Park, Tung Cao Thanh Pham, Ross Harder, Bobae Lim, Gang Xiong, Docheon Ahn, Ian McNulty, Jungho Kim, Kyung Byung Yoon, Ian K Robinson, and Hyunjung Kim

(2013). Core–shell strain structure of zeolite microcrystals. *Nat Mater*, 12(8), 729–734.

CXD Imaging of Zeolites as a function of temperature

Lattice deforms as a function of temperature and calcination process

FEA modeling of ZSM-5 & fluorescent optical microscopy

Wonsuk Cha, Nak Cheon Jeong, Sanghoon Song, Hyun-jun Park, Tung Cao Thanh Pham, Ross Harder, Bobae Lim, Gang Xiong, Docheon Ahn, Ian McNulty, Jungho Kim, Kyung Byung Yoon, Ian K Robinson, and Hyunjung Kim

(2013). Core–shell strain structure of zeolite microcrystals. Nat Mater, 12(8), 729–734.

Cu-ZSM-5 for Nitric Oxide Reduction

Gruenert, W., et al. (1994). Structure, Chemistry, and Activity of Cu-ZSM-5 Catalysts for the Selective Reduction of NOx in the Presence of Oxygen. *The Journal of Physical Chemistry*, *98*(42), 10832–10846.

Cu-ZSM-5 for Nitric Oxide Reduction

Cu-ZSM-5 for Nitric Oxide Reduction

Surface diffraction Coherent Imaging

Thank You

Calcium Oxalate in maize stover

Strain in ZSM-5 Zeolite

Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Coherent Imaging of Extended Samples

Ptychography

- "Arbitrary" field of view
- Quantitative phase information
- •Simultaneous image of sample illumination

Rodenburg, J., et al. (2007). *Physical review letters*, *98*(3), 034801. Thibault, et al. (2008). *Science*, *321*(5887), 379–382.

Huang, X., Harder, R., et al. (2012).

Quantitative X-ray wavefront measurements of Fresnel zone plate and K-B mirrors using phase retrieval. *Opt. Express*, *20*(21), 24038–24048.

Coherent Imaging of Extended Samples

Detector Distance

1D Bragg Ptychography

- Ptychographical scan along the vertical arm of ZnO tetrapod
- focused beam ~ 1.3 μm.
- step size $< 0.5 \mu m$.
- At each scan position, 3D diffraction pattern collected with 11.5 keV x-rays.
- Binned effective array size for each scan: 128x96x128.
- Real-space voxel size: 14x19x14 nm.

X. Huang, et. al., J. Appl. Crystal., 45, 778-784, (2012).

1D Bragg Ptychography - Image

1D Bragg Ptychography - Probe

(a)

Nanoporous Gold structural evolution

To study strain at the alloy-pore interface we have begun to image nano-crystals of gold-silver at different stages of dealloying.

In-place dealloying to maintain the position of 300nm crystals in the 1um focused x-ray beam

Rotate ±<1°to record the whole Bragg spot

~30 sec. dealloying

Nanoporous Gold structural evolution

